Modelling Temporal Information Using Discrete Fourier Transform for Video Classification

نویسندگان

  • Haimin Zhang
  • Min Xu
  • Changsheng Xu
  • Ramesh Jain
چکیده

Recently, video classification attracts intensive research efforts. However, most existing works are based on framelevel visual features, which might fail to model the temporal information, e.g. characteristics accumulated along time. In order to capture video temporal information, we propose to analyse features in frequency domain transformed by discrete Fourier transform (DFT features). Frame-level features are firstly extract by a pre-trained deep convolutional neural network (CNN). Then, time domain features are transformed and interpolated into DFT features. CNN and DFT features are further encoded by using different pooling methods and fused for video classification. In this way, static image features extracted from a pre-trained deep CNN and temporal information represented by DFT features are jointly considered for video classification. We test our method for video emotion classification and action recognition. Experimental results demonstrate that combining DFT features can effectively capture temporal information and therefore improve the performance of both video emotion classification and action recognition. Our approach has achieved a state-of-the-art performance on the largest video emotion dataset (VideoEmotion-8 dataset) and competitive results on UCF-101.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of high impedance faults in distribution networks using Discrete Fourier Transform

In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...

متن کامل

2D Constrained Reconstruction of Spectroscopic Imaging data using accurate segmentation of MR images

Introduction Spatial localisation is of fundamental importance for in vivo Spectroscopic Imaging (SI) studies yet the associated limitations can compromise a clear understanding of the relationship between observed spectra and physiology. In SI data reconstructed by discrete Fourier Transform (FT), the truncated k-space sampling leads to ‘ringing’ which can affect signal values within tissues o...

متن کامل

A New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video

Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...

متن کامل

Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space

In this paper, we propose a method to analyze gender of the pedestrian and whether he or she has a baggage or not in a public space. The challenging part of this work is we only use top-view camera images to protect the pedestrians’ privacy. We focused on temporal changes in their position, shape, and contours over the frames because their appearances do not provide much information. We extract...

متن کامل

Electrocardiogram-based emotion recognition system using empirical mode decomposition and discrete Fourier transform

Emotion recognition using physiological signals has gained momentum in the field of human computer–interaction. This work focuses on developing a user-independent emotion recognition system that would classify five emotions (happiness, sadness, fear, surprise and disgust) and neutral state. The various stages such as design of emotion elicitation protocol, data acquisition, pre-processing, feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1603.06182  شماره 

صفحات  -

تاریخ انتشار 2016